266 research outputs found

    La experiencia docente del uso de objetos de aprendizaje en materias de ingenierĂ­a ambiental: el transporte de contaminantes en medios naturales

    Full text link
    [EN] Teaching tools through distance (e-learning) using Internet resources platforms is becoming increasingly important. The reasons for this are several: first, students find that the teaching-learning process can be adapted to your requirements of time and understanding of concepts; and secondly, the possible interactivity. In this regard, the experiences of the author in the development of Learning Objects for interactive teaching in the field of environmental engineering are presented in this contribution. Experience in teaching of subjects in the curriculum field of environmental engineering at second and third cycle over the last two decades by the author has allowed learning objects are prepared with an important follow from that are online. The objects presented in the field of dispersion of pollutants in air and water has allowed students UPV degrees and higher level, find materials to supplement their teaching and value highly the dictates content. This contribution describes these experiences and how students have responded to them.[ES] La docencia a través de herramientas a distancia (e-learning) utilizando recursos en plataformas de Internet es cada día más importante. Las razones para ello son varias: de un lado, los alumnos se encuentran con que el proceso enseñanza- aprendizaje puede adaptarse a sus requerimientos de tiempo y comprensión de los conceptos; y de otro lado, la posible interactividad favorecida por este tipo de tecnologías. En este sentido, en esta contribución se presentan las experiencias de la autora en el desarrollo de los Objetos de Aprendizaje para la docencia interactiva en el campo de la ingeniería ambiental. La experiencia en impartición de materias en el campo curricular de la ingeniería ambiental en segundo y tercer ciclo a lo largo de las últimas dos décadas por parte de la autora ha permitido que se preparen objetos de aprendizaje con un seguimiento importante desde que se encuentran on-line. Los objetos descritos en el campo de la dispersión de contaminantes en aire y agua ha permitido que alumnos de titulaciones de la UPV y de un ámbito más amplio, encuentren materiales para complementar su docencia y valoren muy positivamente los contenidos dictados. La presente contribución describe estas experiencias y cómo los alumnos han respondido ante las mismas.López Jiménez, PA. (2015). La experiencia docente del uso de objetos de aprendizaje en materias de ingeniería ambiental: el transporte de contaminantes en medios naturales. En In-Red 2015 - CONGRESO NACIONAL DE INNOVACIÓN EDUCATIVA Y DE DOCENCIA EN RED. Editorial Universitat Politècnica de València. https://doi.org/10.4995/INRED2015.2015.1557OC

    REDOX CELL HYDRODYNAMIC MODELLING: TOWARDS REAL IMPROVED GEOMETRY BASED ON CFD ANALYSIS

    Full text link
    [EN] Redox cell is an assembly consisting of electrodes surrounded by a volume of electrolyte (liquid). The redox cell device stores electrical energy with full of high acid flows and this acidity causes big difficulties for physical modeling. To overcome this problem, numerical and experimental analysis of those flows in a real redox cell have been developed and here described. A methodology to improve redox cell performance based on the analysis of the electrolyte flow is proposed. Improvements in the flow uniformity are achieved by means of the definition of some designed parameters based on CFD analysis. The depicted methodology is applied to a specific redox cell geometry for improving authors¿ previous designs. This article quantifies parameters for this particular case and the proposed improvements. The considered CFD model is also validated with experimental data using a real scale cell built in transparent material. The convergence between experimental and numerical results is fairly good. Finally, the geometry designed based on this proposed methodology presents 0% dead zones or recirculations in the membrane area, which will definitely improve the overall interchange efficiency of the cell. This validated methodology is presented for a real future design strategy of these sorts of devices.Escudero Gonzalez, J.; López Jiménez, PA. (2014). REDOX CELL HYDRODYNAMIC MODELLING: TOWARDS REAL IMPROVED GEOMETRY BASED ON CFD ANALYSIS. Engineering Applications of Computational Fluid Mechanics. 8(3):435-446. doi:10.1080/19942060.2014.11015527S43544683Bannari A, Cirtiu C, Kerdouss F, Proulx P, Menard H (2006). Turbulence intensity in an electrochemical cell: effect on reactor performance.Chemical Engineering and Processing: Process Intensification45:471–480.Bard A, Faulkner L (2001).Electrochemical Methods. Wiley.Castelain C, Mokrani A, Legentilhomme P, Peerhossaini H (1997). Residence time distribution in twisted pipe flows: helically coiled system and chaotic system.Experiments in Fluids22(5):359–368.Cebeci T, Bradshaw P (1977).Momentum Transfer in Boundary Layers. McGraw-Hill.Chen H, Ngoc-Cong T, Yang W, Tan C, Li Y, Ding Y; Chen, H; Ngoc-Cong, T (2009) Progress in electrical energy storage system: a critical review.Progress in Natural Science19(3):291–312.CD-Adapco. (2013).User Guide STAR-CCM+. Version 8.06. © 2013Codina G (1992).Desarrollo de una Planta de Acumulación de Energía Eléctrica Basada en el Acumulador Redox Fe/Cr. Thesis. Universidad de Alicante,Demirdzic I, Muzaferija S (1995). Numerical method for coupled Fluid Flow heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology.Computer Methods in Applied Mechanics and Engineering125:232–255.Escudero-González J, Alberola A, López-Jiménez P (2013). Redox cell hydrodynamic modelling, simulation and experimental validation.Engineering Applications of Computational Fluid Mechanics7(2):168–181.Escudero-González, J., & López-Jiménez, P. A. (2014). Iron redox battery as electrical energy storage system in the Spanish energetic framework. International Journal of Electrical Power & Energy Systems, 61, 421-428. doi:10.1016/j.ijepes.2014.03.067Eyer, James M, Corey, Garth P, Iannucci, Joseph J (2004). Sponsoring Organization: USDOE 2004.Frias-Ferrer A (2004).Optimización de la Hidrodinámica de Reactores Electroquímicos:Empleo de Métodos Experimentales y Numéricos. Thesis. Universidad de Alicante.Jörissen L, Frey H (2009). ENERGY | Energy storage.Encyclopedia of Electrochemical Power Sources215–231.Kondoh J, Ishii I, Yamaguchi H, Murata A, Otani K, Sakuta K, Higuchi N, Sekine S, Kamimoto M (2010). Electrical energy storage systems for energy networks.Energy Conversion and Management41:1863–1874.Mellentine J (2011).Performance Characterization and Cost Assessment of an Iron Hybrid Flow Battery. Thesis. University of Iceland.Moore S, David (2003).The Basic Practice of Statistics, 3rd Edition. New York: W,H, Freeman and Company.Navidi W (2006).Estadística Para Ingenieros y Científicos, 1st Edition. New York: McGraw-Hill Companies Inc.Parker C (2009). APPLICATIONS – STATIONARY | Energy storage systems: batteries.Encyclopedia of Electrochemical Power Sources53–64.Rahman F, Rehman S, Abdul-Majeed M (2012). Overview of energy storage systems for storing electricity from renewable energy sources in Saudi Arabia.Renewable and Sustainable Energy Reviews16:274–283.Reddy T (2002).Linden’s Handbook of Batteries, 3rd Edition. McGraw-Hill Professional,Scamman D, Reade G, Roberts E (2009). Numerical modelling of a bromide–polysulphide redox flow battery: part 1: modelling approach and validation for a pilot-scale.Jounal of Power Sources189:1220–1230.Shih TH, Liou WW, Shabbir A, Yang Z, Zhu J (1994). A new k-ɛ eddy viscosity model for hight Reynolds number turbulent flows - model developmente and validation.NASA TM106721.Shukla A, Venugopalan S, Hariprakash B (2001). Nickel-based rechargeable batteries.Jounal Power Sources100:122–148.Vazquez S, Lukic SM, Galvan E, Franquelo LG, Carrasco JM (2010). Energy storage systems for transport and grid applications.IEEE Transactions on Industrial Electronics57(12):3881–3895.Walawalkar R, Apt J (2008).Market Analysis of Emerging Electric Energy Storage System. DOE/NETL-2008/1330

    Continuous Project-Based Learning in Fluid Mechanics and Hydraulic Engineering Subjects for Different Degrees

    Full text link
    [EN] Subjects related to fluid mechanics for hydraulic engineers ought to be delivered in interesting and active modes. New methods should be introduced to improve the learning students' abilities in the different courses of the Bachelor's and Master's degree. Related to active learning methods, a continuous project-based learning experience is described in this research. This manuscript shows the developed learning methodology, which was included on different levels at Universitat Politecnica de Valencia. The main research goal is to show the active learning methods used to evaluate both skills competences (e.g., "Design and Project") and specific competences of the students. The research shows a particular developed innovation teaching project, which was developed by lecturers and professors of the Hydraulic Engineering Department, since 2016. This project proposed coordination in different subjects that were taught in different courses of the Bachelor's and Master's degrees, in which 2200 students participated. This coordination improved the acquisition of the learning results, as well as the new teaching methods increased the student's satisfaction index.Pérez-Sánchez, M.; López Jiménez, PA. (2020). Continuous Project-Based Learning in Fluid Mechanics and Hydraulic Engineering Subjects for Different Degrees. Fluids. 5(2):1-15. https://doi.org/10.3390/fluids5020095S11552Chanson, H. (2001). Teaching Hydraulic Design in an Australian Undergraduate Civil Engineering Curriculum. Journal of Hydraulic Engineering, 127(12), 1002-1008. doi:10.1061/(asce)0733-9429(2001)127:12(1002)Hotchkiss, R. H. (2001). Flow over a «Killer» Weir Design Project. Journal of Hydraulic Engineering, 127(12), 1022-1027. doi:10.1061/(asce)0733-9429(2001)127:12(1022)Novak, P., & Valentine, E. M. (2001). Teaching of Hydraulic Design at University of Newcastle upon Tyne. Journal of Hydraulic Engineering, 127(12), 1009-1012. doi:10.1061/(asce)0733-9429(2001)127:12(1009)Kelley, C. A., Conant, J. S., & Smart, D. T. (1991). Master Teaching Revisited Pursuing Excellence from the Students’ Perspective. Journal of Marketing Education, 13(2), 1-10. doi:10.1177/027347539101300202Pierce, R., & Fox, J. (2012). Vodcasts and Active-Learning Exercises in a «Flipped Classroom» Model of a Renal Pharmacotherapy Module. American Journal of Pharmaceutical Education, 76(10), 196. doi:10.5688/ajpe7610196Savage, R. N., Chen, K. C., & Vanasupa, L. (2009). Integrating project-based learning throughout the undergraduate engineering curriculum. IEEE Engineering Management Review, 37(1), 25-25. doi:10.1109/emr.2009.4804346Universitat Politècnica de València. Institutional Project of the Generic Outcomeshttps://www.upv.es/entidades/ICE/info/Proyecto_Institucional_CT.pdfHadim, H. A., & Esche, S. K. (s. f.). Enhancing the engineering curriculum through project-based learning. 32nd Annual Frontiers in Education. doi:10.1109/fie.2002.1158200Alptekin, S. E., DeTurris, D., Macy, D. J., & Ervin, J. E. (2005). Development of a flying eye: A project-based learning experience. Journal of Manufacturing Systems, 24(3), 226-236. doi:10.1016/s0278-6125(06)80012-9Bell, S. (2010). Project-Based Learning for the 21st Century: Skills for the Future. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 83(2), 39-43. doi:10.1080/0009865090350541

    Sustainability Challenges in Hydraulic Engineering for Agriculture

    Full text link
    Pérez Sánchez, M.; López Jiménez, PA. (2017). Sustainability Challenges in Hydraulic Engineering for Agriculture. Agricultural Research & Technology. 11(4):1-2. doi:10.19080/ARTOAJ.2017.11.555816S1211

    Quantification of Ventilated Façade Effect Due to Convection in Buildings

    Full text link
    [EN] The external layer in a building has a paramount role under the building s energy behaviour point of view. The ventilated façade is a passive system installed on buildings to improve the global energy behaviour. The ventilated façade performance is described. Ventilated façade is mainly based on convection and radiation. This contribution focuses on the convective effect due to buoyancy driven respect to wind forces in the ventilated gap and their influence on the building thermal behaviour. To do so, several computational fluid dynamics models are undertaken with 1.5m/s, 0.5m/s and 0.2m/s wind velocities and a wind temperature of 298K and 300K. In the modelled conditions, the temperature of the external face of the façade was decreased due to the ventilated façade effect at 0.2m/s. 35% of the temperature reduction was due to natural convection buoyancy-driven effect and the rest due to wind-driven effect. With higher wind velocities (1.5m/s) the temperature reduction due to the convective effect was negligible. According to these simple trials, it can be concluded that the buoyancy driven forces have influence only below a certain threshold of wind velocity. The paper helps to better understand the behaviour of the ventilated façade installed in a building and allow designers to quantify the influence of the façade on the global building energy balance.Mora-Pérez, M.; López-Patiño, G.; López Jiménez, PA. (2014). Quantification of Ventilated Façade Effect Due to Convection in Buildings. Researches and Applications in Mechanical Engineering. 3(1):1-11. http://hdl.handle.net/10251/107309S1113

    Project-Based Learning Applied in the Pandemic Scenario. Case Study: Fluid-Mechanical Engineering

    Full text link
    [EN] The pandemic situation due to SARS-Cov-2 obligates to adapt the learning processes in different academic levels. Universitat Politècnica de València (Spain) had to deal with this challenge, where the learning process changed from a face-to-face way to a non-face learning model when the confinement began in March 2020. This caused the need to adapt the teaching process, methods and materials from in-person classes to virtual ones. This contribution shows the adaptation process to face the problems caused by the pandemic and related to the non-face-to-face education through an example in a case study, particularly in the subject called Fluid-Mechanics Engineering. This subject is taught in the third year of the mechanical engineering degree at the Universitat Politècnica de Valencia (Campus of Alcoy). The students enrolled in this subject followed two different teaching procedures and the present research shows how the planning of the subject was adapted when the pandemic situation arose, the different activities developed to adjust to this new context as well as the perception of the students about such an adaptation through the development of an online survey.This work was supported by the project SISIFO (Development of analytical toolS to characterIze the Sustainability of hydraulic systems Indicators that deFine sustainable development Objectives) PID2020-114781RA-I00 from Spanish State Research Plan Scientific and Technical and Innovation 2017-2020. This article has been supported by Universitat Politècnica de València, particularly by the Vice-rectorate for Digital Resources and Documentation (Vicerrectorado de Recursos Digitales y Documentación) and Vice-Rectorate for Studies, Quality and Accreditation (Vicerrectorado de Estudios, Calidad y Acreditación) under the Call for Learning + Teaching (Convocatoria A+D2019: Aprendizaje + Docencia. Proyectos de Innovación y Mejora Educativa) and Project Code: A157. The authors would like to acknowledge the support of the Institute of Educational Sciences (Instituto de Ciencias de la Educación), the Evaluation and Monitoring Commission for Educational Innovation and Improvement Projects (Comisión de Evaluación y Seguimiento de Proyectos de Innovación y Mejora Educativa (CESPIME) and Escuela Politécnica Superior de AlcoyPérez-Sánchez, M.; López Jiménez, PA.; Sanchis, R. (2021). Project-Based Learning Applied in the Pandemic Scenario. Case Study: Fluid-Mechanical Engineering. ICERI Proceedings. 3764-3769. https://doi.org/10.21125/iceri.2021.0899S3764376

    La enseñanza síncrona a distancia como método de formación continua a profesionales. La experiencia del "Curso Online de Estaciones de Bombeo"

    Full text link
    [EN] Any developed society must have an adequate system of continuous training of its professionals that guarantees their adaptation to technological and scientific progress. The education system itself is part of the mechanism of innovation. The potential of information technology and communication allow professionals to conduct training programs with more flexible schedules, without neglecting their jobs, without making expensive travel while maintaining the applicability of the training. This paper presents the development and experience of a training program for professionals synchronous distance engaged in design, operation and maintenance of pumping stations, as present in all types of industrial and agricultural activities. The program was attended by people from different countries, all working professionals, and has taught from different cities. To do this we used the media technicians and audiovisual classrooms Continuing Education Center of the UPV, for synchronous teaching, Policonecta teleteaching tool as online system, and polymorphous-T as a system of information management training program.[ES] Cualquier sociedad desarrollada debe disponer de un adecuado sistema de formación continua de sus profesionales que les garantice su adaptación al progreso tecnológico y científico. El propio sistema de formación forma parte de ese mecanismo de innovación. Las posibilidades que ofrecen las tecnologías de la información y comunicación permiten que los profesionales puedan realizar programas de formación con horarios más flexibles, sin desatender sus puestos de trabajo, sin realizar costosos desplazamientos, pero manteniendo la aplicabilidad de la formación recibida. En este trabajo se presenta el desarrollo, y la experiencia, de un programa de formación a distancia síncrona dirigido a profesionales que se dedican al diseño, operación y mantenimiento de estaciones de bombeo, tan presentes en todo tipo de actividades industriales y agrícolas. Al programa han asistido personas desde diferentes países, todos ellos profesionales en activo, y se ha impartido desde diferentes ciudades. Para ello se han utilizado los medios técnicos y personal de las aulas de audiovisuales del Centro de Formación Permanente de la UPV, para la docencia síncrona, la herramienta Policonecta como sistema de teledocencia en línea, y POLIFORMA-T como sistema de gestión de la información del programa de formación.López Jiménez, PA.; López Patiño, G. (2015). La enseñanza síncrona a distancia como método de formación continua a profesionales. La experiencia del "Curso Online de Estaciones de Bombeo". En In-Red 2015 - CONGRESO NACIONAL DE INNOVACIÓN EDUCATIVA Y DE DOCENCIA EN RED. Editorial Universitat Politècnica de València. https://doi.org/10.4995/INRED2015.2015.1558OC

    Environmental and energy problematic in the mediterranean irrigation regions framework

    Full text link
    [EN] Agriculture is a significant user of water and energy in Mediterranean coasts of Europe, such as Spanish Mediterranean regions. Water implications of such irrigations are well known, but also energy must be considered when environmental implications are analyzed. Apart from this, Mediterranean region has its particular problematic framework related to irrigation issues. Often, the availability of irrigation is determinant to the viability of farmers, and the energy implications must be considered when determining the feasibility of small and big farms, particularly in the Mediterranean regions, where the wide variety of customs in each group of irrigators and definitely, its specific weather conditions, typical of a semi-arid zone. All these aspects are analyzed in this paper, as a state of the art determination of problems and possible solutions in a regional scale. Some solutions presented in this paper can contribute with theoretical reductions of emission of greenhouse gasses until 174.10 tCO2/year in pumped systems and 58.49 tCO2/year in multipurpose systems.Romero, L.; Pérez-Sánchez, M.; López Jiménez, PA. (2017). Environmental and energy problematic in the mediterranean irrigation regions framework. International Journal of Energy and Environment (IJEE). 8(1):51-62. http://hdl.handle.net/10251/99657S51628

    Modified Affinity Laws in Hydraulic Machines towards the Best Efficiency Line

    Full text link
    [EN] The development of hydraulic and optimization models in water networks analyses to improve the sustainability and efficiency through the installation of micro or pico hydropower is swelling. Hydraulic machines involved in these models have to operate with different rotational speed, in order that in each instant to maximize the recovered energy.When the changes of rotational speed are determined using affinity laws, the errors can be significant. Detailed analyses are developed in this research through experimental tests to validate and propose new affinity laws in different reaction turbomachines. Once the errors have been analyzed, a methodology to modify the affinity laws is applied to radial and axial turbines. An empirical method to obtain the Best Efficiency Line (BEL) in proposed (i.e., based on all the Best Efficiency Points (BEPs) for different flows). When the experimental measurements and the calculated values by the empirical method are compared, the mean errors are reduced 81.81%, 50%, and 86.67% for flow, head, and efficiency parameters, respectively. The knowledge of BEL allows managers to define the operation rules to reach the BEP for each flow, improving the energy efficiency in the optimization strategies to be adopted.This research is supported by Program to support the academic career of the faculty of the Universitat Politecnica de Valencia 2015/2016 in the project "Methodology for Analysis of Improvement of Energy Efficiency in Irrigation Pressurized Network".Pérez-Sánchez, M.; López Jiménez, PA.; Ramos, HM. (2018). Modified Affinity Laws in Hydraulic Machines towards the Best Efficiency Line. Water Resources Management. 32(3):829-844. https://doi.org/10.1007/s11269-017-1841-0S829844323Abbott M, Cohen B (2009) Productivity and efficiency in the water industry. Util Policy 17:233–244Alexander KV, Giddens EP, Fuller AM (2009) Radial- and mixed-flow turbines for low head microhydro systems. Renew Energy 34:1885–1894. https://doi.org/10.1016/j.renene.2008.12.013Araujo LS, Ramos HM, Coehlo ST (2006) Pressure Control for Leakage Minimisation in Water Distribution Systems Management. Water Resour Manag 20:133–149. https://doi.org/10.1007/s11269-006-4635-3Cabrera E, Cobacho R, Soriano J (2014) Towards an Energy Labelling of Pressurized Water Networks. Procedia Eng 70:209–217. https://doi.org/10.1016/j.proeng.2014.02.024Carravetta A, Conte MC, Fecarotta O, Ramos HM (2014a) Evaluation of PAT performances by modified affinity law. Procedia Eng 89:581–587. https://doi.org/10.1016/j.proeng.2014.11.481Carravetta A, Del Giudice G, Fecarotta O, Ramos H (2013) Pump as Turbine (PAT) Design in Water Distribution Network by System Effectiveness. Water 5:1211–1225. https://doi.org/10.3390/w5031211Carravetta A, Del Giudice G, Fecarotta O, Ramos H (2012) Energy Production in Water Distribution Networks: A PAT Design Strategy. Water Resour Manag 26:3947–3959. https://doi.org/10.1007/s11269-012-0114-1Carravetta A, Fecarotta O, Martino R, Antipodi L (2014b) PAT efficiency variation with design parameters. Procedia Eng 70:285–291. https://doi.org/10.1016/j.proeng.2014.02.032Corominas J (2010) Agua y Energía en el riego en la época de la sostenibilidad. Ing del Agua 17(3):219–233. https://doi.org/10.4995/ia.2010.2977Dannier A, Del Pizzo A, Giugni M, Fontana N, Marini G, Proto D (2015) Efficiency evaluation of a micro-generation system for energy recovery in water distribution networks. Int. Conf. Clean Electr Power 689–694. https://doi.org/10.1109/ICCEP.2015.7177566Derakhshan S, Nourbakhsh A (2008) Experimental study of characteristic curves of centrifugal pumps working as turbines in different specific speeds. Exp Thermal Fluid Sci 32:800–807. https://doi.org/10.1016/j.expthermflusci.2007.10.004Fecarotta O, Carravetta A, Ramos HM, Martino R (2016) An improved affinity model to enhance variable operating strategy for pumps used as turbines. J Hydraul Res 1686:1–10. https://doi.org/10.1080/00221686.2016.1141804Fontana N, Giugni M, Portolano D (2012) Losses Reduction and Energy Production in Water-Distribution Networks. J Water Resour Plan Manag 138:237–244. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000179Giugni M, Fontana N, Ranucci A (2014) Optimal Location of PRVs and Turbines in Water Distribution Systems. J Water Resour Plan Manag 140:06014004. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000418Giustolisi O, Savic D, Kapelan Z (2008) Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. J Hydraul Eng 134:626–635. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:5(626)Gulich J (2003) Effect of Reynolds number and surface roughness on the efficiency of centrifugal pump. J Fluid Eng 125:670–679Jiménez-Bello MA, Royuela A, Manzano J, Prats AG, Martínez-Alzamora F (2015) Methodology to improve water and energy use by proper irrigation scheduling in pressurised networks. Agric Water Manag 149:91–101. https://doi.org/10.1016/j.agwat.2014.10.026Kevin B (1990) Optimization m o d e l for w a t e r distribution system design. J Hydraul Eng 115:1401–1418Mataix C (2009) Turbomáquinas Hidráulicas. Universidad Pontificia Comillas, MadridMcNabola A, Coughlan P, Corcoran L, Power C, Prysor Williams A, Harris I, Gallagher J, Styles D (2014) Energy recovery in the water industry using micro-hydropower: an opportunity to improve sustainability. Water Policy 16:168. https://doi.org/10.2166/wp.2013.164Moreno M, Córcoles J, Tarjuelo J, Ortega J (2010) Energy efficiency of pressurised irrigation networks managed on-demand and under a rotation schedule. Biosyst Eng 107:349–363. https://doi.org/10.1016/j.biosystemseng.2010.09.009Nazari A, Meisami H, (2008) Instructing WaterGEMS Software Usage. Department of Publications and Technical Affairs of Iranian National Retrofitting Center (INRC), TehranPasten C, Santamarina JC (2012) Energy and quality of life. Energy Policy 49:468–476. https://doi.org/10.1016/j.enpol.2012.06.051Pérez-Sánchez M, Sánchez-Romero F, Ramos HM, López-Jiménez PA (2016) Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study. Water 8:1–26. https://doi.org/10.3390/w8060234Pérez-Sánchez M, Sánchez-Romero F, Ramos H, López-Jiménez PA (2017) Energy Recovery in Existing Water Networks: Towards Greater Sustainability. Water 9(2):97Pérez Sánchez M, Sánchez-Romero FJ, Ramos H, López-Jiménez PA (2018) PATs selection towards sustainability in irrigation networks: simulated annealing as a water management tool. Renew Energy 116:234–249. https://doi.org/10.1016/j.renene.2017.09.060Ramos HM, Borga A (1999) Pumps as turbines: an unconventional solution to energy production. Urban Water 1:261–263. https://doi.org/10.1016/S1462-0758(00)00016-9Ramos HM, Mello M, De PK (2010) Clean power in water supply systems as a sustainable solution: from planning to practical implementation. Water Sci Technol Water Supply 10:39–49. https://doi.org/10.2166/ws.2010.720Ramos HM, Simão M, Borga A (2013) Experiments and CFD Analyses for a New Reaction Microhydro Propeller with Five Blades. J Energy Eng 139:109–117. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000096Rossman LA (2000) EPANET 2: User’s manual. U.S. EPA. ed, CincinnatiSamora I, Franca M, Schleiss A, Ramos HM (2016a) Simulated Annealing in Optimization of Energy Production in a Water Supply Network. Water Resour Manag 30:1533–1547. https://doi.org/10.1007/s11269-016-1238-5Samora I, Hasmatuchi V, Münch-Alligné C, Franca MJ, Schleiss AJ, Ramos HM (2016b) Experimental characterization of a five blade tubular propeller turbine for pipe inline installation. Renew Energy 95:356–366. https://doi.org/10.1016/j.renene.2016.04.023Sarbu I, Borza I (1998) Energetic optimization of water pumping in distribution systems. Period Polytech Ser Mech Eng 42:141–152Shi G, Liu X, Yang J, Miao S, Li J (2015) Theoretical research of hydraulic turbine performance based on slip factor within centripetal impeller. Adv Mech Eng 7(7):1–12. https://doi.org/10.1177/1687814015593864Simpson AR, Marchi A (2013) Evaluating the Approximation of the Affinity Laws and Improving the Efficiency Estimate for Variable Speed Pumps. J Hydraul Eng 139:1314–1317. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000776Singh P (2005) Optimization of the Internal Hydraulic and of System Design in Pumps as Turbines with Field Implementation and Evaluation. University of Karlsruhe, KarlsruheSuter P (1966) Representation of pump characteristics for calculation of water hammer. Sulzer Tech Rev 66:45–48Ulanicki B, Kahler J, Coulbeck B (2008) Modeling the Efficiency and Power Characteristics of a Pump Group. J. Water Resour Plan Manag 134:88–93. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:1(88)Yang SS, Derakhshan S, Kong FY (2012) Theoretical, numerical and experimental prediction of pump as turbine performance. Renew Energy 48:507–513. https://doi.org/10.1016/j.renene.2012.06.00
    • …
    corecore